

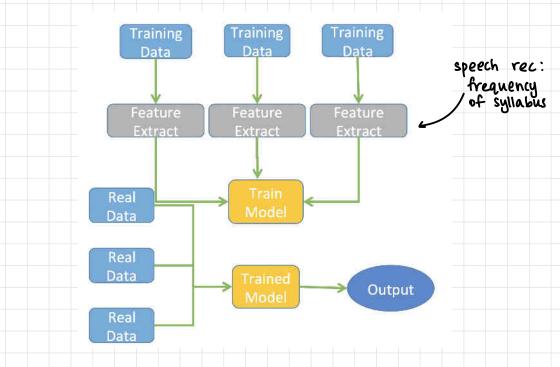
Advanced Analytics on Big Data

feedback/corrections: vibha@pesu.pes.edu

VIBHA MASTI

Machine Learning

Complex programs



6: You want to write a program to separate out the rocks into different categories.

What will your approach be?

- · Record colour, size, weight, thickness etc
- · Cluster (unsupervised)
- · Classify some training data into groups
- · KNN/ neural nets (supervised)

Supervised vs Unsupervised Learning

· Eg: grouping IPL batsmen

supervised

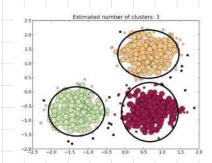
- manually (opening, attacking): supervised
- automatically: unsupervised

In Google News, grouping together similar articles.

- a: classify as supervised or unsupervised
- Determining if a particular credit card transaction is fraudulent
- Supervised
 Analyzing an image to determine if a lump is cancerous
- Recommending a product based on what the user buys unsupervised
- Market segmentation: dividing customers into various groups
 unsupervised no pre-defined groups
 supervised pre-defined groups

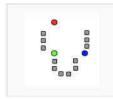
1. Scalable ML- K-means Clustering

- Partition dataset into k clusters
- Each training example is a point in d-dimensional space (d parameters / attributes)
- Use distance between points
 - Euclidean
 - Manhattan
 - Cosine
 - Eq: 3-means

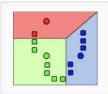


Demonstration of k-means algorithm Citerative algorithm)

Demonstration of the standard algorithm



1. k initial "means" (in this case k=3) are randomly generated within the data domain (shown in color).



2. k clusters are created by associating every observation with the nearest mean. The

partitions here represent the

Voronoi diagram generated by the means.

3. The centroid of each of the k clusters becomes the new mean.

4. Steps 2 and 3 are repeated until convergence has been reached.

Algorithm

- 1. Select k random centres
- 2. Assign each data point to its closest cluster centre form K clusters
- 4. If new centres different from old centres, back to step 2

3. Re-compute cluster centroids Caverage of each dimension)

- How can the k-means algorithm be modified to run with MapReduce?
 What is the output of Map and Reduce stages?
 - Hints:
 Iterative algorithm like page rank
 - Which steps can be done in Map and which in Reduce?
 - Input: dataset set of points large k centroids small
 - Map: read both input files assign points to centroids
 - output: <centroid, point > key: centroid
 - Reduce: gets points associated with cluster compute new centroids output: (new-centroid)

Loop: compare old and new centroids check max iterations

Given the following points20, 30, 99, 102,

centroids are 20, 30.

- 53, 9, 11, 54
- Assume that each row of numbers is on a different machine

Partition them into two clusters using k-means assuming initial

Show what the keys and values are for one iteration of k-means

Machine 1 Machine 2 points: 20, 30, 99, 102 points: 53, 9, 11, 54

clusters: 20,30 clusters: 20,30

Mapper 1 output

(1,20)

(2,53)

(2,30)

(2,99)

<2,997
<2,1027

Reducer input

(2, [30, 99, 102, 53, 54) 7

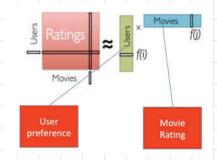
Reducer output

(1, [20,9,113>

(1, 13.33) or 13.33 (2, 67.6)

K-means Optimisations 1. Use of Combiners · compute local sums and count of the assigned clusters · Sends < centroid, < partial_sum, count >> 2. Use of single Reducer Amount of data to reducers small · Single reducer to tell if clusters changed · Single output file 2. Scalable ML- Alternating least Squares · Collaborative filtering · User-item relationships crating of each item by each vector) · Sparce matrix 4 star rating ☆☆☆☆ 合合 公公公 Unknown rating 4444 合合 User-Item Rating matrix is ? 合合合 合合 generally very sparse i.e., most entries are unknown ☆☆☆☆ ? 合合

- · User-Item rating matrix Rnxm
- · Try to write as a product of
 - User vector Anxi
 Item vector Bmxi
- · Calculate A, B such that R= AB
- · R: known
 - A: unknown
 B: unknown
- · rij : rating by user i for item j



- · Approaches to factorisation
 - Gradient descent for optimisation problem (too slow)
 - Factorisation using alternating least squares
- · Iterative algorithm with random initial assignments of A, B
- · On ith iteration, we have A_{i-1} and B_{i-1} Assume B_{i-1} is correct and use to calculate best A_i
 - Assume Ai is correct and use to calculate best Bi
- · Loop until convergence

ALS: ith Iteration

· Assume Bi-1 correct

· Consider R-A; B; : error term

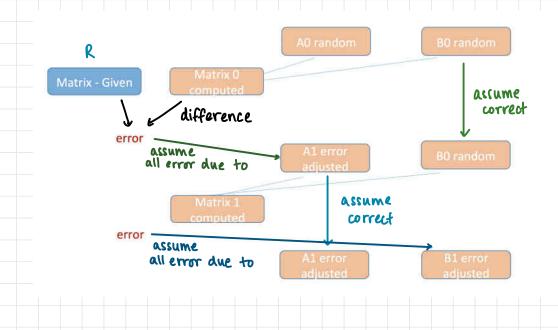
· | | R-AiBi-T | taken as R-AiBi-T is a matrix and we want a number (absolute determinant)

· Find A; that will minimise ILR-A; B;-TI

· Shown that A; = (B; TBi-1) Bi-T RT Cleast squares regression

· Compute Bi from Ai

estimate)



a: ALS with Map-Reduce

- Use matrix multiplication with Map-Reduce to compute $A_i = (B_{i-1}^T B_{i-1}^T)^{-1} B_{i-1}^T R^T$
- · Similar for matrix inversion
- · Compute-heavy

Spark MLLib

Text classification

Supervised - given document, predict its topic

Features

Subject: Re: Lexan Polish?
Suggest McQuires #1 plastic
polish. It will help somewhat
but nothing will remove deep
scratches without making it
worse than it already is.

McQuires will do something ...

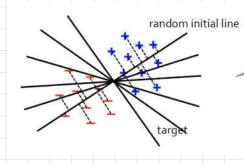
<u>Label</u>

1: about science
0: not about science

CTR, inches of rainfall, ...

text, image, vector, ...

· Logistic regression: find separation between 2 classes
Support vector classifier: find line separating 2 classes



Classify into science and nonscience. Each point represents a document.

TRAINING	TESTING/PRODUCTION
Load data	Load <i>new</i> data
↓ labels + plain text	↓ plain text
Extract features	Extract features
↓ labels + feature vectors	
Train model	Predict using model
↓ labels + predictions	↓ predictions
Evaluate	Act on predictions

· ML pipeline must be written as a script (not modular)

· Train many models on diff splits with diff hyperparameters

Solve Challenges

- - break up the fields

· Make RDDs easier to read

- · Developers: program to extract features
- 1. Read RDDs into dataframes
- 2. ML pipeline: transformers, estimators, evaluators
 - 3. Parameter tuning: API

Dataframes

- · KBs to PBs
- · Wide variety of formats (Hive, existing RDDs)
- SOTA optimisation and code generation via Spark SQL catalyst optimiser
 APIs in Python, Java
- · RDD + Schema + DSL (domain specific language)

Dataframe: RDD + Schema + DSL

label: Double
text: String
words: Seq[String]
features: Vector
prediction: Double

bbs text work features

Named columns with types

Domain-Specific Language

f Solbed actioner articler
actibate =
data.filter("label" == 1)

f Scale labels
data("label") * 0.5

Spark ML Pipelines

· Automates process of defining models

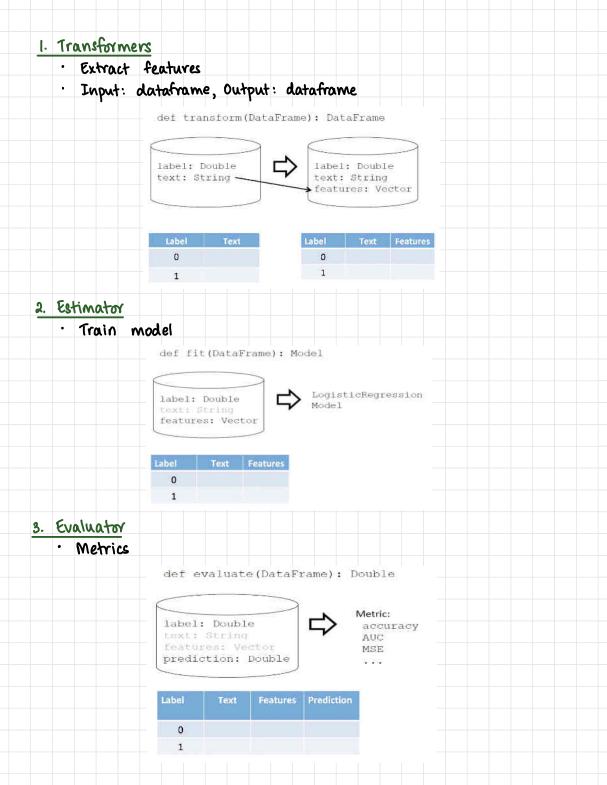
1. Transformers

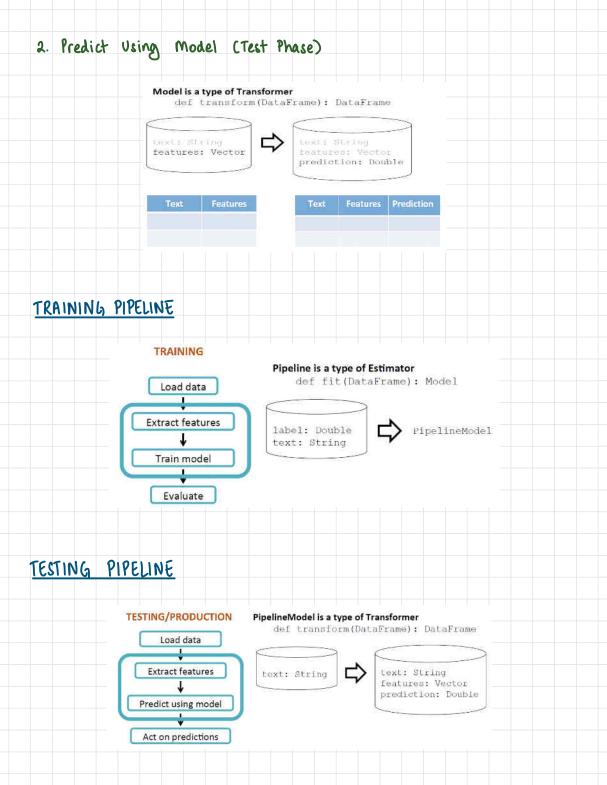
ML Pipeline

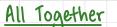
- · Extract features from dataframe
 - · Features stored in new dataframe

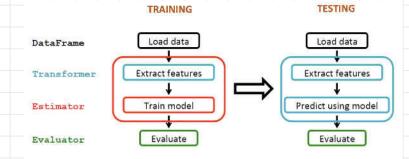
2. Estimators

- · ML algorithms (standard defined or user defined)
- 3. Evaluaturs
 - · Compute predictions
 - · Estimate error metrics
 - · Tune algorithm parameters
 - · Evaluator depends on estimator Clogistic regression, decision trees)



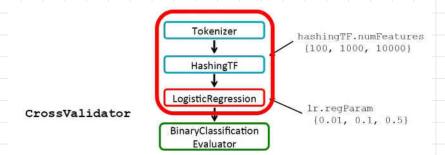






Parameter Tuning

- · Given: estimator, parameter grid, evaluator
 - find best parameters



- Suppose we have a dataset in which each line has a recording of a noise, and its classification
 - E.g., <bell.wav>, bell

What would be the input DataFrame be?

Suppose we want to recognize sounds by

- Extracting the frequencies from the wav file
 Gaussian model
- Find the average frequency of each sound
 - For a new sound, calculate average frequency
 - Find closest matching sound
- What are the DataFrames, Evaluators, etc needed?

1.	In	put	dat	rafro	ame										
		< be	:(I-wa	رمد	bell>)									
2.	Fe	.atur	re d	lata	fran	ne									
		(be	.II. wa	, v,	bell,	frequ	uen ci	es>							
3.	Tri	ansf	orme	r											
	,	< bel	l·wa	v, b	ell,	avg-	freq	nevų	5						
4.	M	odel													
	-	trai prea	in (fo	eatu pre	re - o dict -	latafi data	rame tram) : fi e) : f	ind ind	avg clos	freq est m	for natch	each ing	sound sound	type
d e e	9 P	L (e a r	n i	n g										
•	Ito	erati	ve –	ma	hix	multi	iplica:	tion							
•	U	<i>alle</i>	võlec	for	DL										
			_			train	M	Span	rk						
		Deep Learning Cluster						Hadoop/Spark Cluster							
									(1) Prepare datasets						
			(2) DL training & Test					_				_,			
		[(3) A	pply [DL mo	del				
			Storage System for Deep Learning Data					Distributed File							
		Fi	igure 1	: ML F	Pipeline	with m	ultiple p	orogran	ns on	separ	ated clu	sters			

